Study Finds Case Isolation, Contact Tracing is More Vital to COVID-19 Control

by GoNews Desk 1 month ago Views 503
 

5,000 new symptomatic cases diagnosed each day would likely require 150,000–200,000 contacts to be quarantined every day if no physical distancing was in place.

Also Read: India Records Over 2,000 COVID-19 Deaths In 24 Hours, Fatalities Near 12,000-Mark

In the absence of a vaccine or highly effective treatments for COVID-19, combining isolation and intensive contact tracing with physical distancing measures—such as limits on daily social or workplace contacts—might be the most effective and efficient way to achieve and maintain epidemic control, according to new modelling research published in The Lancet Infectious Diseases journal.

Using social-contact data on more than 40,000 individuals from the BBC Pandemic database to simulate SARS-CoV-2 transmission in different settings and under different combinations of control measures, the researchers estimate that a high incidence of COVID-19 would require a considerable number of individuals to be quarantined to control infection. For example, a scenario in which 5,000 new symptomatic cases were diagnosed each day would likely require 150,000–200,000 contacts to be quarantined every day if no physical distancing was in place.



The study is the first time researchers have used social contact data to quantify the potential impact of control measures on reducing individual-level transmission of SARS-CoV-2 in specific settings. They aimed to identify not only what would theoretically control transmission, but what the practical implications of these measures would be in terms of numbers quarantined.

However, the authors note that the model is based on a series of assumptions about the effectiveness of testing, tracing, isolation, and quarantine—for example about the amount of time it takes to isolate cases with symptoms (average 2.6 days) and the likelihood that their contacts adhere to quarantine (90%)—which, although plausible, are optimistic.

“Our findings reinforce the growing body of evidence which suggests that we can’t rely on one single public health measure to achieve epidemic control”, says Dr Adam Kucharski from the London School of Hygiene & Tropical Medicine, UK. “Successful strategies will likely include intensive testing and contact tracing supplemented with moderate forms of physical distancing, such as limiting the size of social gatherings and remote working, which can both reduce transmission and the number of contacts that need to be traced.”

He adds: “The huge scale of testing and contact tracing that is needed to reduce COVID-19 from spreading is resource intensive, and new app-based tracing, if adopted widely alongside traditional contact tracing, could enhance the effectiveness of identifying contacts, particularly those that would otherwise be missed.”

In the study, researchers analysed data on how 40,162 people moved about the UK and interacted with others prior to COVID-19 to simulate how combinations of different testing, isolation, tracing, and physical distancing scenarios—such as app-based tracing, remote working, limits on different sized gatherings, and mass population-based testing—might contribute to reducing secondary cases. They also modelled the rate at which the virus is transmitted—known as the reproductive number (R), or the average number of people each individual with the virus is likely to infect at a given moment—under different strategies. To keep the COVID-19 epidemic declining, R needs to be less than 1.

In the model, the secondary attack rate (the probability that a close contact of a confirmed case will be infected) was assumed to be 20% among household contacts and 6% among other contacts. The researchers calculated that, had no control measures been implemented, R would be 2.6—meaning that one infected person would infect, on average, 2–3 more people.

The model suggested that mass testing alone, with 5% of the population undergoing random testing each week (i.e. 460,000 tests per day in UK), would lower R to just 2.5, because so many infections would either be missed or detected too late.

Compared with no control measures, self-isolation of symptomatic cases (at home) alone reduced transmission by an estimated 29% (lowering R to 1.8); whilst combining self-isolation, household quarantine, and tracing strategies could potentially lower transmission by as much as 47% (R 1.4) when using app-based contact tracing (assuming the app is adopted by 53% of the population), and by 64% with manual tracing of all contacts (R 0.94).

Latest Videos

Facebook Feed